Collisional-activation tandem mass spectrometry of sodium adduct ions of methylated oligosaccharides: sequence analysis and discrimination between α -NeuAc- $(2\rightarrow 3)$ and α -NeuAc- $(2\rightarrow 6)$ linkages

Jérôme Lemoine, Gérard Strecker, Yves Leroy, Bernard Fournet*.

Laboratoire de Chimie Biologique de l'Université des Sciences et Techniques de Lille Flandres-Artois (Unité Mixte de Recherche du C.N.R.S. No. 111), 59655 Villeneuve d'Ascq (France)

and Guy Ricart

Laboratoire de Spectrométrie de Masse de l'Université des Sciences et Techniques de Lille Flandres-Artois, 59655 Villeneuve d'Ascq (France)

(Received May 4th, 1991; accepted for publication July 17th, 1991)

ABSTRACT

Collision-activated dissociation (c.a.d.) of sodium adducts of molecular ion species have been carried out on methylated β -D-Galp-(1 \rightarrow 4)- β -D-GlcpNAc-(1 \rightarrow 3)- β -D-Galp-(1 \rightarrow 4)-D-Glcp(1), β -D-Galp-(1 \rightarrow 3)- β -D-GlcpNAc-(1 \rightarrow 3)- β -D-Galp-(1 \rightarrow 4)-D-Glcp(2), α -D-NeuAc-(2 \rightarrow 3)- β -D-Galp-(1 \rightarrow 3)- β -D-GlcpNAc-(1 \rightarrow 3)- β -D-Galp-(1 \rightarrow 4)-D-Glcp(3), α -D-NeuAc-(2 \rightarrow 6)- β -D-Galp-(1 \rightarrow 4)- β -D-GlcpNAc-(1 \rightarrow 3)- β -D-Galp-(1 \rightarrow 4)-D-GlcpNAc-(1 \rightarrow 3)- β -D-GlcpNAc-(1 \rightarrow 3)- β -D-Manp-(1 \rightarrow 4)-D-GlcpNAc (5). The numerous daughter ions reflect the sequences, clearly differentiate (1 \rightarrow 3) and (1 \rightarrow 4) linkages, and discriminate between α -NeuAc-(2 \rightarrow 3) and α -NeuAc-(2 \rightarrow 6) linkages.

INTRODUCTION

Although determination of the amino acid sequences of proteins is relatively easy to achieve by the Edman procedure and, more recently, by tandem mass spectrometry (m.s.-m.s.), determination of the structure of complex oligosaccharides remains a challenge. N.m.r. and mass spectrometry are the most common and convenient techniques for the determination of the anomeric configuration of the sugar moieties, the position of the linkages and the sequences and branching patterns. With the latter technique, the results are based on methylation analysis by g.l.c.-m.s.¹, f.a.b.-m.s.^{2,3}, and, more recently, m.s.-m.s.⁴⁻⁶. F.a.b.-m.s.-m.s. can be helpful not only for the sequence determination of oligosaccharides but also for linkage analysis of the deprotonated molecular ions of disaccharides⁷ and of the alkali metal adducts of the molecular

^{*} To whom correspondence should be addressed.

210 J. LEMOINE et al.

ions of larger structures⁸⁻⁹. For instance, carbon-carbon ring cleavages of $(M + 2Li - H)^+$ or $(M + Na)^+$ ions are more extensive than for $(M + H)^+$ ions and consequently yield more information on structure^{10,11}.

Methylation also results in increased sensitivity in f.a.b.-m.s. and l.s.i.-m.s. by enhancing the hydrophobicity and surface activity. Moreover, methylated derivatives undergo specific fragmentations from the non-reducing termini at HexNAc linkages¹². Likewise, acetylated derivatives give c.a.d.-mass spectra from $(M + H)^+$ ions which allow $(1 \rightarrow 3)$ and $(1 \rightarrow 4)$ linkages to be differentiated¹³.

Since parent signals may be enhanced greatly by adding an alkali salt to the matrix, we have investigated the c.a.d.-mass spectra of several cationised and methylated oligosaccharides.

EXPERIMENTAL

A high-resolution Kratos Concept II HH ($E_1B_1E_2B_2$) tandem mass spectrometer was used at an accelerating voltage of 8 kV. The f.a.b. gun was operated at 7 kV with xenon. Each positive-ion mass spectrum was the sum of ten scans. Precursor ions were fragmented at a collision energy of 6 kV with He at a pressure sufficient to reduce the parent signal by 75%. Daughter ions were analysed by linked scanning at a constant B/E ratio, using a DS90 (DG DG/30) data system. A 1:1000 resolution was selected in both MS1 and MS2.

 β -D-Galp-(1 \rightarrow 4)- β -D-GlcpNAc-(1 \rightarrow 3)- β -D-Galp-(1 \rightarrow 4)-D-Glcp (1), β -D-Galp-(1 \rightarrow 3)- β -D-GlcpNAc-(1 \rightarrow 3)- β -D-Galp-(1 \rightarrow 4)-D-Glcp (2), α -D-NeuAc-(2 \rightarrow 3)- β -D-Galp-(1 \rightarrow 3)- β -D-GlcpNAc-(1 \rightarrow 3)- β -D-GlcpNAc-(1 \rightarrow 3)- β -D-GlcpNAc-(1 \rightarrow 4)-D-Glcp (3), and α -D-NeuAc-(2 \rightarrow 6)- β -D-Galp-(1 \rightarrow 4)-D-Glcp (4) were isolated from human milk¹⁵, and α -D-NeuAc-(2 \rightarrow 6)- β -D-Galp-(1 \rightarrow 4)- β -D-GlcpNAc-(1 \rightarrow 2)- α -D-Manp-(1 \rightarrow 3)- β -D-Manp-(1 \rightarrow 4)-D-GlcpNAc (5) was prepared from the urine of patients suffering from sialosidosis¹⁶.

The oligosaccharides were methylated according to Ciucanu and Kerek¹⁴, and a solution of each product (5 μ g) in methanol was dried on the probe tip and then mixed with NaI-saturated thioglycerol (2 μ L).

RESULTS AND DISCUSSION

Only cationised fragments were present in the c.a.d.-mass spectra of the $(M + Na)^+$ ions of the methylated 1-5. This finding constrasts with the results for natriated native oligosaccharides, the c.a.d.-mass spectra of which still contain oxonium-type fragments. These observations suggest that the alkali metal strongly interacts with the polar functional groups to give a stable adduct. For instance, the $^{1.5}X_i$, Y_i , B_i , and C_i ions may reflect local decomposition induced by the interaction of Na^+ and the heterocyclic and glycosidic oxygens or the acetamido group of GlcNAc. However, "charge-remote fragmentation" (i.e., cleavage of a glycosidic bond other than at the site of Na^+ attachment) is a more likely explanation for the Z_i cleavage.

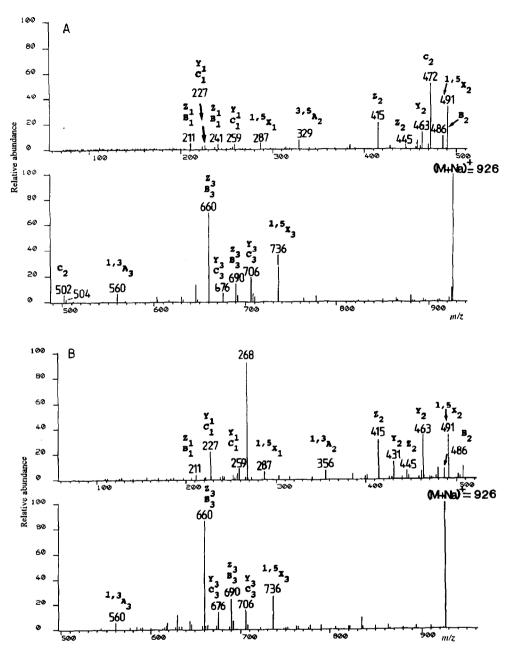


Fig. 1. C.a.d.-mass spectra (6 kV) of the (M + Na)⁺ ion of A, methylated β -D-Galp-(1 \rightarrow 4)- β -D-GlcpNAc-(1 \rightarrow 3)- β -D-Galp-(1 \rightarrow 4)-D-Glcp (1); and B, methylated β -D-Galp-(1 \rightarrow 3)- β -D-GlcpNAc-(1 \rightarrow 3)- β -D-Galp-(1 \rightarrow 4)-D-Glcp (2).

J. LEMOINE et al.

The major ions that reflect the sequences of 1-5 are listed in Table I according to the nomenclature of Domon and Costello⁵. Double designations are used for the ions produced by isomeric fragmentations from the reducing and non-reducing ends of the oligosaccharides, e.g., the ion at m/z 211 (Fig. 1A) is attributed to both Z_1 and B_1 cleavages. This double designation is necessary because c.a.d.-m.s. of Hex-Hex-NAc sequences produces Z_1 and B_1 ions with a mass shift of 41 (difference in mass between Hex and HexNAc).

Fig. 1 gives the $(M + Na)^+$ c.a.d.-mass spectra of the methylated isomeric tetrasaccharides 1 and 2. Their sequences may be deduced, for instance, from the $^{1.5}X_i$

TABLE I

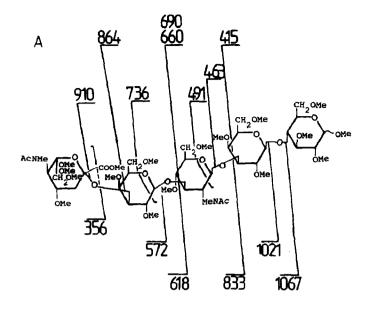
Major ions obtained on f.a.b.-m.s.-m.s. of $(M + Na)^+$ ions from the methylated oligosaccharides 1-5

•	•	,		, ,		
	1	2	3	4	5	
Mol. wt. of $(M + Na)^+$	926	926	1287	1287	1532	
Daughter ions						
$B_i + Na - H$	241	40.6	604	604		
or +H	486	486	604	604		
	690	690				
B _i + Na + H-CH ₃ OH	211	21.1	570	570	572	
	211	211	572	572	817	
	660	660	1021	1021	1225	
$C_i + Na + H - CH_3OH$	227					
	472	227	833	588	588 1037	
	676	676	055	833	833 1241	
$C_i + Na - H$	259	259	618	618	618	
or +H	502	706	1067	1067	1271	
	706	700	1007	1007	1271	
^{1.5} X _i + Na	287	287	491	491	532	
	491	491	736	736	736	
	736	736	730	730	981	
$Y_i + Na + H$	259	259	462	462		
or -H	463	463	463 910	463 910	708	
	706	706	910	910		
$Y_i + Na + H - CH_3OH$	227	227			021	
	227 6 7 6	431			921	
	676	676				
$Z_i + Na - H$	241	445				
	445	445	690	690		
	690	690				
Z _i + Na – OCH ₃	211	211	415	415	660	
	415	415	660	415 660	660 905	
	660	660	864	000	703	

series of ions (m/z 287, 491, and 736) that correspond to the reducing-end sequence HexNAc-Hex-Hex, and from the B_i series of ions (m/z 241 or 211, 486, and 690) that correspond to Hex-HexNAc-Hex.

Methylated isomers 1 and 2 can be discriminated by comparison of the C_2 fragments. For 1 (Fig. 1A), the daughter ion at m/z 472 corresponds to the elimination of methanol from a 4-substituted HexNAc and, for 2 (Fig. 1B), the fragment at m/z 268 is due to the elimination of Hex (loss of 236 m.u. from the C_2 ion at m/z 504) characteristic of a 3-substituted HexNAc. Similar results have been reported² for classical f.a.b.-m.s. of methylated oligosaccharides. However, in contrast to f.a.b.-mass spectra, where ions from both cleavage of linkages and loss of methanol are present, the present results indicate that the C_2 ion at m/z 504 is either weak or absent. This result may be explained by a decomposition of this C_2 ion simultaneously after its formation in the collision cell by loss of a neutral fragment (Hex or MeOH).

Other specific fragmentations were observed. Thus, for 2, the $^{1,3}A_2$ ion at m/z 356 and the $^{1,3}A_3$ ion at m/z 560 are attributed to the sequences Hex-(1 \rightarrow 3)-HexNAc and Hex-(1 \rightarrow 3)-HexNAc-(1 \rightarrow 3)-Hex, respectively. For 1, the Hex-(1 \rightarrow 4)-HexNAc sequence produces an $^{3,5}A_2$ ion at m/z 329 and the expected $^{1,3}A_3$ fragment is also present.


The specific elimination of the 3-linked substituent also occurs with 3 (Fig. 3A): loss of the 3-linked sequence NeuAc-Hex from the HexNAc produces the ion at m/z 268.

The results also allow the α -NeuAc-(2 \rightarrow 3) linkage in 3 (Figs. 2A and 3A) and the α -NeuAc-(2 \rightarrow 6) linkage in 4 (Figs. 2B and 3B) to be discriminated on the basis of their (M + Na)⁺ c.a.d.-mass spectra. Except for an intense ^{1,5}X₃ ion at m/z 736, ions containing the non-reducing end of the molecule preponderate for the α -(2 \rightarrow 6) linkage (C_i ions at m/z 588, 618, 833, 1061: B₄ ion at m/z 1021). In contrast, reducing-end fragments preponderate for the α -(2 \rightarrow 3) linkage (Z_i at m/z 660, 690, and 864; Y_i fragments at m/z 463 and 910).

These observations suggest that the α -NeuAc- $(2 \rightarrow 6)$ -Hex sequence further stabilises the sodium adduct and induces a charge-remote fragmentation. This process, which has been described also for lithiated fatty acids¹⁷, may reflect enhanced chelation caused by folding of the NeuAc-Hex moiety. In contrast, α - $(2\rightarrow 3)$ linkages do not enhance the chelation and, in fact, the alkali metal interacts at the α - $(2\rightarrow 3)$ linkage and promotes the formation of the C_1 ion at m/z 356.

The same fragmentation pattern was seen in the c.a.d.-mass spectra of methylated 5 (Fig. 4), where the NeuAc residue is α -(2 \rightarrow 6)-linked to Hex (C_i daughter ions at m/z 588, 618, 833, 1037, 1241, and 1271; lack of a C_i ion at m/z 356, and no intense Z_5 cleavage ions at m/z 1109 and 1141). The sequence of the hexasaccharide 5 is deduced from C_i ions (m/z 588, 833, 1037, and 1241), which correspond to the sequence NeuAc-Hex-HexNAc-Hex-Hex, and the ^{1.5} X_i ions (m/z 532, 736, and 981), which correspond to the reducing-end sequence HexNAc-Hex-HexNAc.

Thus, c.a.d.-mass spectrometry of sodium adducts of methylated oligosaccharides is an alternative to that of $(M + H)^+$ ions when additional sensitivity is necessary. The fragmentation mechanisms proposed are hypothetical at present and clarification

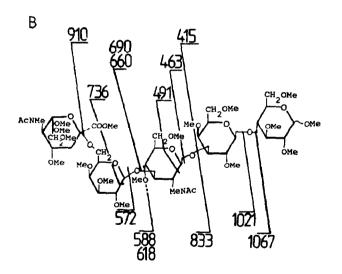
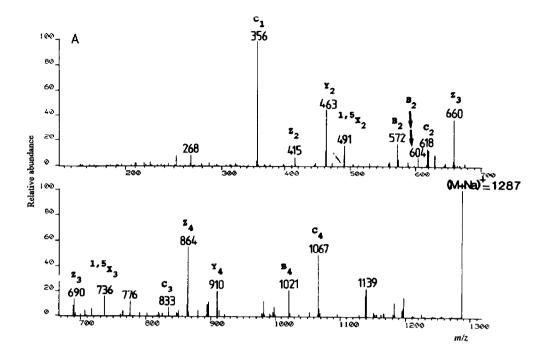



Fig. 2. Fragmentation pattern of methylated α -D-NeuAc- $(2\rightarrow3)$ - β -D-Galp- $(1\rightarrow3)$ - β -D-GlcpNAc- $(1\rightarrow3)$ - β -D-Galp- $(1\rightarrow4)$ -D-Glcp (3) (A) and methylated α -D-NeuAc- $(2\rightarrow6)$ - β -D-Galp- $(1\rightarrow4)$ - β -D-GlcpNAc- $(1\rightarrow3)$ - β -D-Galp- $(1\rightarrow4)$ -D-Glcp (4) (B) obtained by c.a.d.-m.s. (6 kV) of the (M + Na)⁺ ions.

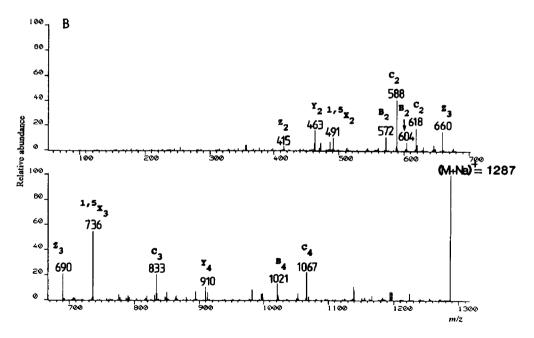


Fig. 3. C.a.d.-mass spectra (6 kV) of the $(M + Na)^+$ ion of A, methylated α -D-NeuAc- $(2 \rightarrow 3)$ - β -D-Galp- $(1 \rightarrow 3)$ - β -D-GlepNAc- $(1 \rightarrow 3)$ - β -D-Galp- $(1 \rightarrow 4)$ -D-Glep (3); and B, methylated α -D-NeuAc- $(2 \rightarrow 6)$ - β -D-Galp- $(1 \rightarrow 4)$ - β -D-GlepNAc- $(1 \rightarrow 3)$ - β -D-Galp- $(1 \rightarrow 4)$ -D-Glep (4).

216 J. LEMOINE *et al*.

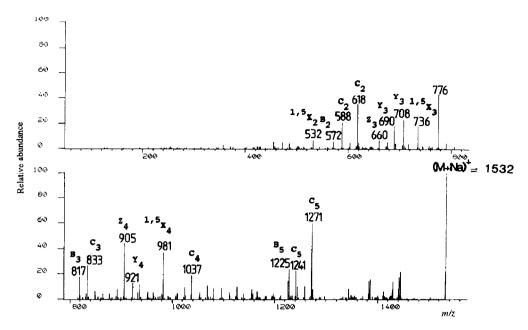


Fig. 4. C.a.d.-mass spectra (6 kV) of the $(M + Na)^+$ ion of methylated α -D-NeuAc- $(2 \rightarrow 6)$ - β -D-Galp- $(1 \rightarrow 4)$ - β -D-GlcpNAc- $(1 \rightarrow 2)$ - α -D-Manp- $(1 \rightarrow 3)$ - β -D-Manp- $(1 \rightarrow 4)$ -D-GlcpNAc (5).

will require further studies in order to determine the scope and limitations for the sequencing of oligosaccharides.

ACKNOWLEDGMENTS

These investigations were supported by the Centre National de la Recherche Scientifique (Unité Mixte de Recherche No. 111; Directeur Professeur A. Verbert) and by the Université des Sciences et Techniques de Lille Flandres-Artois.

REFERENCES

- 1 B. Lindberg and J. Lönngren, Methods Enzymol., 50 (1978) 3-33.
- 2 H. Egge and J. Peter-Katalinic, Mass Spectrom. Rev., 6 (1987) 331-393.
- 3 A. Dell and G. W. Taylor, Mass Spectrom. Rev., 3 (1984) 357-394.
- 4 S. A. Carr, V. N. Reinhold, B. N. Green, and J. R. Hoss, Biomed. Mass Spectrom., 12 (1985) 288-295.
- 5 B. Domon and C. E. Costello, Glycoconj. J., 5 (1988) 397-409.
- 6 B. L. Gillece-Castro and A. L. Burlingame, Proc. Conf. Mass Spectrom. Allied Topics, 35th, Miami Beach, 1989, pp. 1190-1191.
- 7 D. Garozzo, M. Giuffrida, G. Impallomeni, A. Ballistreri, and G. Montaudo, Anal. Chem., 62 (1990) 279-286.
- 8 B. Domon, D. R. Müller, and W. J. Richter, Org. Mass Spectrom., 24 (1989) 357-359.
- 9 D. R. Müller, B. Domon, and W. J. Richter, Adv. Mass Spectrom., 11B (1989) 1309-1325.
- 10 Z. Zhou, S. Ogden, and J. A. Leary, J. Org. Chem., 55 (1990) 5444-5446.
- 11 R. Orlando, C. A. Bush, and C. Fenselau, Biomed. Mass Spectrom., 19 (1990) 747-754.
- 12 A. Dell, Methods Enzymol., 193 (1990) 647-660.

- 13 B. Domon, D. R. Müller, and W. J. Richter, Biomed. Mass Spectrom., 19 (1990) 390-392.
- 14 I. Ciucanu and F. Kerek, Carbohydr. Res., 131 (1984) 209-217.
- 15 A. Kobata, K. Yamashita, and Y. Tachibama, Methods Enzymol., 50 (1978) 216-220.
- 16 G. Strecker, T. Hondi-Assah, B. Fournet, G. Spik, J. Montreuil, P. Maroteaux, P. Durand, and J. P. Farriaux, Biochim. Biophys. Acta, 444 (1976) 349-358.
- 17 J. Adams and M. L. Gross, J. Am. Chem. Soc., 108 (1986) 6915-6921.